
Compiler Testing with Relaxed Memory Models

Luke Geeson

University College London, UK

luke.geeson@cs.ucl.ac.uk

Lee Smith

Arm Ltd*, UK

lee.d.smith@acm.org

Abstract—Finding bugs is key to the correctness of compilers
in wide use today. If the behaviour of a compiled program, as
allowed by its architecture memory model, is not a behaviour of
the source program under its source model, then there is a bug.
This holds for all programs, but we focus on concurrency bugs
that occur only with two or more threads of execution. We focus
on testing techniques that detect such bugs in C/C++ compilers.

We seek a testing technique that automatically covers con-
currency bugs up to fixed bounds on program sizes and that
scales to find bugs in compiled programs with many lines of code.
Otherwise, a testing technique can miss bugs. Unfortunately, the
state-of-the-art techniques are yet to satisfy all of these properties.

We present the Téléchat compiler testing tool for concurrent
programs. Téléchat compiles a concurrent C/C++ program and
compares source and compiled program behaviours using source
and architecture memory models. We make three claims: Téléchat
improves the state-of-the-art at finding bugs in code generation
for multi-threaded execution, it is the first public description of a
compiler testing tool for concurrency that is deployed in industry,
and it is the first tool that takes a significant step towards the
desired properties. We provide experimental evidence suggesting
Téléchat finds bugs missed by other state-of-the-art techniques,
case studies indicating that Téléchat satisfies the properties, and
reports of our experience deploying Téléchat in industry regression
testing.

Index Terms—D.1.3 Concurrent Programming, B.1.2.b Formal
models, B.1.4.b Languages and compilers, D.2.5.r Testing tools

I. INTRODUCTION

Finding compiled program behaviours, or bugs, that are

forbidden by the source program’s language semantics, is key

to ensuring compiler correctness. Finding concurrency bugs

in compilers is especially important, as more programs are

compiled for multicore processors each year. Unfortunately,

finding such bugs can be tricky, as concurrent programs exhibit

behaviours that can be unintuitive. To complicate matters,

multi-core processors may execute each thread of a concurrent

program out-of-order, influencing the execution of other threads

through shared memory. This is relaxed memory concurrency,

and is exhibited by processors based on the Arm architecture,

Intel x86-64, IBM PowerPC, RISC-V, MIPS, and more. As

such concurrency bugs can require conditions that rarely occur

in practice. We address the problem of how to find concurrency

bugs introduced by compilers when preparing programs for

these architectures.

For a compiler to be deemed correct, the compiled program

must behave as allowed by the semantics of its source [52]. The

behaviour of a concurrent program can be defined by its set

of executions - characterised by the communications between

*Smith retired from Arm at the end of 2022.

{ *x = 0; *y = 0; } // fixed initial state

#define relaxed memory_order_relaxed

#define release memory_order_release

#define acquire memory_order_acquire

// Concurrent Program with threads

P0 (atomic_int* y,atomic_int* x) {

atomic_store_explicit(x,1,relaxed);

atomic_thread_fence(release);

atomic_store_explicit(y,1,relaxed);

}

P1 (atomic_int* y,atomic_int* x) {

atomic_exchange_explicit(y,2,release);

atomic_thread_fence(acquire);

int r0 = atomic_load_explicit (x,relaxed);

}

// Predicate over the final state

exists (P1:r0=0 /\ y=2)

Fig. 1. Litmus tests have a fixed initial state, a concurrent program and a
predicate over the final state. Outcomes that satisfy the exists clause are
forbidden by the C/C++ model [46]. When compiled the outcome is allowed
by the Armv8 AArch64 [27] model. We found this bug [38] using Téléchat.

threads of execution through shared memory [75]. A memory

consistency model [12], such as the ISO C/C++ [46] model

MS , describes the set of allowed executions of a C/C++ source

program S. Likewise, the Armv8 model MC in §B2.3.1 in the

Arm Architecture Reference Manual [14] describes the allowed

executions of a compiled program comp(S). All widely used

processor architectures have published memory models. A

correct compiler must ensure that the allowed source program

executions include the allowed compiled program executions

for each well-defined concurrent program S:

∀S.outcomes(exec(comp(S),MC)) ⊆

outcomes(exec(S,MS)) (eq.1)

If the outcomes of source program executions do not include

the outcomes of compiled executions under each respective

model (exec(P,M) runs P under a model M), then there is

a bug. Of course, this holds for all programs and so we focus

on bugs that are observable only with two or more threads.

We are motivated to test production compilers developed by

Arm’s engineers. Such compilers can undergo many revisions

each day for which the repeated formal proof of eq.1 is

infeasible [77]. Comparing unbounded executions under relaxed

memory is also undecidable [16]. Instead, we conduct bounded

testing. We assist Arm’s compiler teams who wish to deploy

automated compiler testing for concurrent C/C++.

979-8-3503-9509-9/24 © 2024 IEEE

Accepted for publication by IEEE. © 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

334

https://www.acm.org/publications/policies/artifact-review-and-badging-current
luke.geeson@cs.ucl.ac.uk
lee.d.smith@acm.org

We seek a technique with four properties. Firstly, a technique

needs coverage of bugs up to fixed bounds on programs with

a fixed initial state, loop unroll factor, and no recursion. A

technique without coverage may miss bugs and cannot be

reliably deployed in automated testing. Second, a general

technique should support current and future models of each

source language and assembly language supported by the

compiler under test, else it can miss bugs as architecture

specifications evolve. Thirdly, a technique should find bugs in

given tests automatically - without further input. Of course,

finding concurrency bugs can take days, which makes testing

daily compiler revisions impractical. Testing should therefore

scale to find bugs in programs with many threads and lines of

code (LoC) per thread quickly (two minutes). Without these

properties a technique can miss bugs, as we require a reliable

and repeatable means of testing each compiler revision.

Unfortunately, the state-of-the-art tools [22], [66], [77] are

yet to satisfy the four properties. The C4 tool [50], [77], [78]

exploits the scalability of hardware, but hardware may miss

bugs [78], as bugs can occur perhaps once in thousands of runs

of a compiled program, if hardware implements the required

behaviour at all. validc [22] and cmmtest [66] compare

all bounded executions, but require experts to find the bugs.

As far as we know, these works are not deployed in industry.

We present the Téléchat compiler testing tool. Given a C/C++

program, Téléchat prepares source and compiled programs for

testing, using the herd [12] simulator. Téléchat finds bugs

when there is an outcome of executing the compiled program

under the architecture model that is not an outcome of executing

the source program under the source model.

We claim that Téléchat is the first tool to satisfy the four

properties. By using the herd simulator, Téléchat finds bugs

automatically. By relying on official models, Téléchat covers

the behaviour allowed by authoritative C/C++ and architecture

standards. Coverage is general, since we parameterise over

both source and target models. Our technique scales, since

Téléchat optimises compiled programs. Significant work was

required to make testing scale, as herd is designed to test

small programs, and execution time expands factorially as the

test size increases, practically limiting its ability to scale much

above programs of the order of 40-50 LoC. Téléchat makes

significant steps towards scalable compiler testing in practice

as checking compiled programs terminates in milliseconds.

Téléchat improves on the state-of-the-art for the task of

finding C/C++ concurrency bugs. In other words, the set of

bugs found by the state-of-the-art are a subset of bugs found

by Téléchat. We contribute experimental evidence that suggests

Téléchat finds behaviours missed by the state-of-the-art on the

same inputs and models. As far as we know, Téléchat is the

first publicly available compiler testing tool (for concurrency)

to be deployed in industry.

The rest of this work is structured as follows. §II covers

the background and literature review. §III covers the design,

implementation, reproducible artefact, and documentation for

Téléchat. We evaluate the efficacy of Téléchat in §IV and

conclude in §V with lines of inquiry exposed by our work.

A. Our Contributions

Technique, Tool, and Artefact

• Novel compiler testing technique parameterised over

source and architecture memory models.

• The Téléchat tool that implements our technique.

• An artefact is available to reproduce experiments using

benchmark tests and documentation.

Bug-Finding Campaign

• Three new compiler bugs: Reported a run-time crash [36]

induced by const-qualified atomic loads in LLVM

for the Armv8 architecture, a wrong-endian bug [39]

in the compilation of 128-bit atomic store instructions,

(Armv8) a concurrency bug [37] in the compilation of

128-bit sequentially consistent [49] loads (Armv8), and an

optimisation opportunity [40] in the GCC MIPS backend.

• A new model bug: Fixed a bug [35] in the unofficial

Armv7 model that allowed behaviour forbidden on Arm

hardware.

• One new bug type: Refute a claim made by Morisset et.

al [66] and identify a new kind of bug [38] (Fig. 1).

Controlled Experiments

• Found a concurrency behaviour (Fig. 7) known to experts

but missed by the state-of-the-art C4 [77], [78].

• Found two concurrency behaviours: Conducted large-scale

differential testing of LLVM and GCC for Armv8, Armv7,

Intel, RISC-V, PowerPC, and MIPS architectures. With

9 million tests, it is the most extensive concurrency test

campaign as far as we know.

Industry Experience

• Addressed a practical limitation of simulation. herd was

designed to simulate small tests and many authors [32],

[42], [66] claim it is unlikely to scale to finding bugs

using large tests. We optimise compiled programs and

herd runs much faster, often terminating in milliseconds.

• Answered queries from Arm’s partners [58] concerning

LDAPR and LDAR instructions.

• Deployed Téléchat in automated testing for Arm Compiler.

As far as we know, Téléchat is the industry’s first publicly

available technique that is deployed in automated testing,

and has tested Arm Compiler since June 2022.

B. Téléchat Benefits

• Futureproof, Téléchat tests compilers against architectural

memory models, and those memory models are typically

designed to describe the limits of permissible orderings of

the architecture, including permissible ordering behaviours

that will only be seen on future hardware or on hardware

that is not readily accessible, for example Morello [13].

• Familiar to engineers who are not necessarily concurrency

experts. Arm’s engineers are using litmus tests to discuss

concurrency queries as they arise.

• Authoritative oracle. By using official architectural mod-

els, Téléchat approaches a ground truth for compiler test-

ing - reducing the bug-finding problem to test generation.

335

II. PRELIMINARIES

We illustrate the concepts involved using the example bug

report [38] in Fig 1, known as message passing.

A. Litmus Tests and Memory Models

Litmus tests - like in Fig. 1 - are used to explore executions

allowed by hardware or a model. Litmus tests define a fixed

initial state, a concurrent program, and a predicate over the

final state. A concurrent program defines multiple threads

(thd=P0,P1,. . .) that read from or write (events E, in the

terminology of §B.2 of [14]) to shared memory locations

(loc=x,y,z,. . .). When threads communicate, they produce

one or more executions as shown in Fig. 2. The diy tool [11]

generates litmus tests from executions, such as the execution

dabc in Fig. 2. Isla [15], Dartagnan [42], and Memalloy [76]

use SMT solvers to explore executions in a similar fashion.

Definition II.1. Execution: A graph where nodes are events and

edges are partial order relations over events [3]. An execution

is allowed if it is exhibited by hardware or a model, else it is

forbidden. The base relations are:

• program-order (po)≜{ (E1,E2)|thd(E1)=thd(E2)

∧E1;E2} ie the order instructions are written on the page

• reads-from (rf) ≜ { (W,R)| loc(W)=loc(R) ∧
val(W) = val(R) }

• coherence (co)≜{ (W1,W2)|loc(W1)=loc(W2) }

• from-read (fr) ≜ {(R,W1) | ∃W2. W2
rf
−→ R ∧ W2

co
−→ W1}

a: W(Rlx)[x]=1

b: W(Rlx)[y]=1

po

c: RMW(Rel)[y](0>2)

fr

d: R(Rlx)[x]=0

po

fr

a: W(Rlx)[x]=1

b: W(Rlx)[y]=1

po

d: R(Rlx)[x]=1

rf

c: RMW(Rel)[y](0>2)

fr

po

a: W(Rlx)[x]=1

b: W(Rlx)[y]=1

po

d: R(Rlx)[x]=1

rf

c: RMW(Rel)[y](1>2)

rf

po

a: W(Rlx)[x]=1

b: W(Rlx)[y]=1

po

c: RMW(Rel)[y](0>2)

co fr

d: R(Rlx)[x]=0

po
fr

Fig. 2. Executions of Fig. 1, a:R(Rlx)[x]=0 means event a reads the value
0 from location x with relaxed memory ordering. Top left is acbd or cabd,
right abcd, bottom left cdab, right dabc (dabc is forbidden by RC11 [25]).

Executions abstract machine operations as mathematical ob-

jects. Executions model architecture features, such as pipelines

or caches, as their effects on the order that reads and writes

reach shared memory. For a given thread, the order that its

accesses reach memory influences the executions of other

threads, which influence memory in turn. When a litmus test

is run from some fixed initial state, the interaction between all

threads of execution produces a set of candidate executions.

A memory consistency model (or a model) filters out

forbidden executions of a litmus test. Models define predicates

on relations over events, forbidding - for instance - cyclic

executions. The Cat [2] language specifies models of RC11 [25],

Armv8 AArch64 [27] (official), Armv7 [8] (unofficial), RISC-

V [61] (official), Linux [9], Intel x86-64 [65], IBM Pow-

erPC [63], MIPS [64], and more. The herd simulator [12]

enumerates the executions of small litmus tests (from fixed

initial states up to fixed loop unroll factor with no recursion)

allowed by a Cat model. Fig. 3 shows the outcomes of the

executions of Fig. 1 allowed by the RC11 C/C++ model [25].

Definition II.2. Outcome: An outcome is the result of an

execution (def. II.1) expressed as a set of assignments to shared

memory (e.g. y=2) and thread-local data (e.g. P1:r0=1).

The set of outcomes of executing a litmus test P is denoted

outcomesP . We defer other effects (like IO) to future work.

{ P1:r0=0; [y]=1; } // outcome acdb of Fig.1

{ P1:r0=1; [y]=1; } // abcd

{ P1:r0=1; [y]=2; } // cdab

Fig. 3. The outcomes of executions in Fig. 2. The acyclic constraint of
the RC11 model [25] forbids dabc and its outcome {P1:r0=0; y=2}.

The Arm AArch64 and RISC-V models are maintained by

their respective architecture specification teams. Other models

used are from peer-reviewed publications. We build on these

models and rely on their correctness.

The litmus tool [10] runs litmus tests on hardware to check

if hardware correctly implements models. If hardware exhibits

forbidden executions then either the model is wrong, or the

hardware is incorrectly implemented. As silicon manufacturers

may implement restricted variants of an architecture model,

hardware executions may omit behaviours allowed by the model.

The litmus tool is therefore of limited use to compiler testing.

To be clear, it is necessary to validate hardware against models

but that is a separate problem from validating compilers against

models.

Tools that use hardware as an oracle for correct behaviour

are unlikely to be reliable for compiler testing. Observing

behaviours on hardware may require circumstances that rarely

occur in practice, if at all. The chances of observing a

behaviour depend on whether a given implementation supports

it and whether the hardware is in a sufficiently stressed state.

Observations may require sampling a vast array of hardware

many (thousands of) times to reliably test a compiler revision.

Even then, testing on hardware may miss bugs.

B. Compiler Testing

We use the testing terminology from Barr et al. [17]. To test

is to stimulate a system under test and observe its response [17].

We stimulate the system under test comp, with a source

program S and observe a response [31]:

• Internal Compiler Error: comp may crash during compi-

lation because of a problem in comp or S; for example a

segmentation fault in GCC.

• Functional Error: comp(S) produces a compiled program

C that exhibits behaviour B that differs from expected

behaviour B′ when C is run in a test environment exec;

for example a run-time crash or concurrency bug.

We focus on concurrency bugs. A concurrency bug occurs

when there are outcomes of executions of comp(S) - run in

test environment exec - that are forbidden by S.

336

TABLE I
COMPARISON OF STATE-OF-THE-ART COMPILER TESTING TECHNIQUES - INSPIRED BY TABLE 1 OF [20]

Technique Automation Coverage General Scalability exec Comparison

Prose/Experts ✗ ? ✓ ✗ Human Any
cmmtest [66] ? ✗ ✗ ✗ Human+hardware executions (def. II.1)
validc [22] ? ✓ ✗ ✗ Human+models executions
C4 [50], [77], [78] ? ✗ ? ✓ models+hardware outcomes (def. II.2)
Téléchat ✓ ✓ ✓ ✓ models only outcomes

Definition II.3. Concurrency Bug: for a multi-threaded S,

outcomesC(exec(C)) ̸⊆ outcomesS(exec(S))

We test programs that exhibit bugs with at least two threads

communicating via shared memory. Conversely, a negative

difference occurs when outcomesC ⊂ outcomesS when

optimisations are applied. The state-of-the-art make exec

precise (§II-C). Like Leroy [52] we focus on deterministic

programs (whose behaviour changes only in response to

different initial states) and test environments (immune to

changes in exec). We restrict bugs to executions that have

different outcomes. For instance, in Fig. 2, the execution dabc

- and its outcome {P1:r0=0; y=2} - is forbidden by the

RC11 model [25] and ISO C/C++ model [46], but the compiled

program allows it under the Armv8 model [27].

The choice of source model decides what is a bug. We

use the RC11 [48] model to explore the behaviours of Fig. 1,

but emphasize that ISO C/C++ standard permits behaviours

forbidden by RC11. Conversely, the Linux model [9] permits

behaviours that are forbidden by standard C/C++ [43]. The

source model thus acts as an oracle with respect to the allowed

behaviours of the system under test. Since standards (and their

models) can change - it is especially important to parameterise

testing under multiple models. We support testing under models

of source and compiled languages supported in mainstream

C/C++ compilers.

Chen et al.’s [24] survey identifies two compiler testing

techniques explored by the state-of-the-art: differential and

metamorphic testing. Fig. 4 illustrates both techniques. Dif-

ferential testing (see CSmith [79]) compiles a program S

with different compilers, comparing the behaviours of each.

For instance, comparing the outcomes of running executables

produced by clang -O1 and clang -O3. Metamorphic

testing (see Orion [51]) generates a variant S2 of the source

program S1 that has the same behaviour as S1, compiles both

with the same compiler, and checks the behaviour of each is

the same. For example, when compiling print(1+1) and

print(2), both compiled programs should output 2.

We end this section mentioning related work that is out

of scope. Donaldson et al. 2017 [30] and Lidbury et al.

2015 [53] test the compilation of GPU/OpenCL kernels, and

graphics shaders. Neither test the compilation of concurrent

programs [22] in the C/C++ sense, as multi-threaded GPUs

support a parallel computation model.

Differential Testing Metamorphic Testing

S

C1 C2

comp1 comp2

bug?

S S2

C1 C2

comp

variant

comp

bug?

Fig. 4. Differential and Metamorphic Testing - §II-B.

C. State-of-the-art Techniques

We summarise the state-of-the-art in compiler testing with

memory models. We compare works in terms of Automation,

Coverage, Generality, and Scalability (see §I). A tool is

automatic if it can be used by compiler engineers in regression

testing with no intervention by concurrency experts to generate

tests or interpret results. Coverage describes the set of potential

bugs the tool will discover. Scale bounds the number of threads

and LoCs of inputs. A tool is general if it supports multiple

source and compiled languages. In Table I we state whether

the solution fulfils the requirement with a ✓, does not ✗, and

partially fulfils the requirements with ?.

1) Prose and Expertise: The first (non-)solutions involve

reading prose language standards such as ISO C/C++ [46], or

consulting memory model experts. Both approaches are manual

and are effective in finding bugs. Both are prohibitively tedious

and expensive for use in routine regression testing.

2) Semi-automatic Tools: The cmmtest tool [66] conducts

differential testing by extending CSmith with concurrency

support for an early C/C++ model. Given a single-threaded

C/C++ program, cmmtest checks if the hardware execution

of the optimised program is a sub-graph of an unoptimised

hardware execution, else a bug may occur and a concurrency

expert finds a test case reproducer. validc [22] builds

on cmmtest [66] by matching all bounded executions of

optimised LLVM IR programs against unoptimised IR.

Both techniques are manual as experts must reproduce bugs

using the warnings output by the tools. Since execution match-

ing is an instance of the sub-graph isomorphism problem [26]

it will not scale in general [67]. Neither technique is general, as

cmmtest relies on x86-only [45] tools, and validc accepts

only LLVM IR programs. The validc tool covers bugs

allowed by the C/C++ or LLVM models; however cmmtest

may miss bugs as it relies on hardware.

3) Hardware-based Tools: The C4 tool of Windsor et al.

2021/22 [50], [77], [78] conducts metamorphic testing of litmus

tests by comparing the outcomes of hardware runs (using the

litmus tool) against outcomes of source test simulations

337

(using the herd tool) under the RC11 model [25]. C4 is

automatic and testing scales as hardware often runs quickly.

Hardware test environments are nondeterministic and may omit

behaviour - and hence bugs - allowed by an architecture model

(§II-A). To improve coverage, Windsor et al. “stress-test” [77]

hardware. Since C4 was developed in parallel with our work,

we summarise it:

outcomes(litmus(comp(S), hardware))

⊆ outcomes(herd(S,MS)) (testC4)

4) Our Solution - Testing with Models: The herd tool [12]

simulates both source and compiled litmus tests under source

MS and architecture models MC automatically. It follows

that we can test compilers by comparing the outcomes (see

Fig. 3) of executions of compiled programs under MC against

outcomes executions of a source program under MS .

III. DESIGN AND IMPLEMENTATION OF TÉLÉCHAT

entry S C

outcomesS outcomesC

1. generate (diy)* 2. Téléchat

3.herd(S, MS)* 4. herd(C, MC)*

5.⊇(mcompare)∗

Fig. 5. Test environment exectv including the Téléchat tool and tools we
improved marked *. testtv checks the outcomes of simulating comp(S) under
its architecture model MC against the source S under source model MS .

A. Technique Design

We present the Téléchat automatic testing tool and technique

testtv; for compilers including GCC and LLVM. Fig. 5 details

the test environment exectv summarised by:

outcomes(herd(comp(S),MC))

⊆ outcomes(herd(S,MS)) (testtv)

The test environment of Fig. 5 (exectv) proceeds as follows:

1) Generate concurrent C/C++ litmus test S.

2) Téléchat prepares S for compilation, compiles it using

comp and disassembles the relocatable ELF file, then

constructs an assembly litmus test C and state mappings

m from outcomes of S to outcomes of C.

3) Simulate S using herd under one of the C/C++ memory

models in the herd tool-suite [5] (see §II-A), collect

allowed C/C++ outcomes outcomesS .

4) Simulate C using herd under its architecture memory

model in the herd tool-suite [5] (see §II-A). Get archi-

tecturally allowed outcomes outcomesC .

5) Use mcompare from the herd tool-suite [5] to check if

outcomesC ⊆ outcomesS using state mappings m. If

outcomesC ̸⊆ outcomesS then there is a bug.

Téléchat enables the automatic testing of program outcomes

by completing the graph in Fig. 5. To support compiled tests

comp(S), we extend the diy [11] test generator, the herd [12]

simulator, and mcompare [5].

The testtv technique is remarkably simple. By checking

that the expected outcomes of a source test under the source

memory model include the actual outcomes of the compiled

test under an architecture model we get a technique that is

familiar to engineers who are not necessarily experts in relaxed

memory concurrency. testtv is simple enough that Téléchat is

cited in discussions by Arm’s engineers [58].

exectv is a deterministic (§II-B) test environment. In other

words, we compare outcomes under source and architecture

models - rather than relying on hardware or the operating

system. Further, herd runs deterministic litmus tests: from

a fixed initial state with a fixed loop unroll factor, under

models of Armv8 AArch64 [27] (official), RISC-V [61]

(official), RC11 [25], Armv7 (unofficial) [8], Intel x86-64 [65],

MIPS [64], IBM PowerPC [63], and more.

The Téléchat tool-chain is run as part of regular automated

compiler testing and is, as far as we know, the industry’s

first publicly available compiler testing tool that is deployed

in automated compiler testing of concurrent C/C++. Nothing

prevents deployment of Téléchat outside of Arm however.

B. Tool Implementation

entry S S′

O

C

1.diy 2.l2c (prep)

5.(herd + mcompare)

3.c2s (comp+disas)

4.s2l (parse+opt)

Fig. 6. Breakdown of the Téléchat tool. The l2c, c2s, and s2l tools are
new. We modified diy [11], herd [12], and mcompare [5] to to accept
compiler-generated tests.

Fig. 6 breaks down Step 2 (Téléchat) of Fig. 5 as follows:

1) Input: Generate a C/C++ litmus test S (step 1 of Fig. 5).

2) The litmus2c (l2c) tool prepares S for compilation,

producing a C/C++ program S′. Optionally fuzz S′.

3) The c2assembly (c2s) tool compiles S′ with ELF

relocations (requires flags -c -g) and disassembles the

object file using GNU or LLVM objdump. c2s returns

an assembly file O and state mappings m.

4) The assembly2litmus (s2l) tool parses O and constructs

an optimised assembly litmus test C.

5) Output: Pass S and C to herd for simulation under

source and architecture models (steps 3-4 of Fig. 5).

C. Adoption, Usage, and Documentation

We provide a Docker artefact to reproduce our work. The

artefact contains builds of LLVM and GCC for the architectures

above, the Téléchat tool, and a Makefile to reproduce the

experiments. A variant of the Docker artefact is deployed in

automated testing for Arm’s compiler teams.

For users we provide guides and example test suites. Téléchat

ships a user guide with its artefact. The Docker file contains

example tests suites to build on.

338

To reduce the risk of tool stagnation, we provide Arm’s com-

piler team with documentation including internal conference

talks on Téléchat, memory model training, and wiki pages.

Arm’s compiler engineers are increasingly using litmus tests

to discuss concurrency queries as they arise [59].

D. Challenges Encountered During Implementation

We end by discussing the challenges encountered whilst

implementing Téléchat. The first challenge arose in how

to represent compiled programs as litmus tests. Compiled

programs represent memory locations as binary addresses

0xf00 that can be manipulated with arithmetic instructions.

ELF files layout multiple locations together in sections. Litmus

tests represent memory locations as symbolic variables x that

have no memory layout constraints. We use DWARF metadata

to map numeric addresses to symbolic locations and symbol

table information to gather memory layout constraints. As such

our technique is as accurate as the metadata compilers provide.

By converting between address formats, Téléchat bridges a

gap between formal modelling tools and real-world systems.

Developing Téléchat spawned many extensions to the herd

tool-suite [5], including formalising the semantics of new

instructions, new data types, and tools. For instance we added

a vector datatype to model memory layout and store pair

instructions that span contiguous locations. We also added a

regression suite for the herd tool-suite itself. Our work was used

by students in projects modelling the NEON [6] and SVE [7]

extensions of the Arm architecture. To compare outcomes of

tests of differing architectures or languages, we added state

mapping support to mcompare.

IV. EVALUATION

We evaluated Téléchat by conducting experiments using

multiple compilers. Our results suggest Téléchat improves on

the state-of-the-art (we found one existing behaviour missed

by C4, and four new bugs [36]–[39]), proposes new lines of

inquiry into test generation (a new kind of bug), questions

interactions between sequential and concurrency semantics

(const and atomic), and makes an impact in industry.

A. Comparison with The State-Of-The-Art: C4

Téléchat is similar to C4 [50], [77], [78], but Téléchat

relies only on simulation. Both tools rely on the herd tool-

suite [5]. Téléchat differs in that it relies solely on simulation

of both source and compiled litmus tests whereas C4 relies

on hardware executions to collect compiled test outcomes.

Tab. II summarises the differences between C4 and Téléchat.

This small change in technique has consequences for whether

behaviours are observable in the test environment.

We compare tools directly as both take litmus tests and

compare outcomes. We pass 85 litmus tests to both tools

and compare the outcomes (def. II.2) of each. Téléchat finds

behaviours that Windsor et. al miss [78]. Consider Fig. 7 and

its outcomes when simulated under the RC11 model [25] -

Fig. 8 (left). We compile Fig. 7 using Téléchat and LLVM-11

(clang -O3) to get an Arm AArch64 litmus test. Fig. 8

{ *x = 0, *y = 0 }

#define relaxed memory_order_relaxed

#define load atomic_load_explicit

#define store atomic_store_explicit

void P0(atomic_int* y,atomic_int* x) {

int r0 = load(x,relaxed);

atomic_thread_fence(relaxed);

store(y,1,relaxed);

}

void P1(atomic_int* y,atomic_int* x) {

int r0 = load(y,relaxed);

atomic_thread_fence(relaxed);

store(x,1,relaxed);

}

exists (P0:r0=1 /\ P1:r0=1)

Fig. 7. The outcome { P0:r0=1; P1:r0 = 1} is forbidden under the
proposed RC11 [48] model. When compiled the outcome is allowed by Armv8
AArch64 [27], Armv7 [8], PowerPC [63], and RISC-V [61] models.

(right) shows the outcomes of simulating the assembly litmus

test under the Arm AArch64 model [27]. We observe the

outcome { P0:r0=1; P1:r0 = 1} that is forbidden by

the RC11 model (Fig. 8 (left)), but allowed by the AArch64

model (Fig. 8 (right)). Windsor et. al state that C4 missed this

behaviour, but they observe it under model simulation, which

increases our confidence in Téléchat.

RC11 [48] Outcomes Arm AArch64 Outcomes

{P0:r0=0; P1:r0=0;}

{P0:r0=0; P1:r0=1;}

{P0:r0=1; P1:r0=0;}

.

{P0:r0=0;P1:r0=0;}

{P0:r0=0;P1:r0=1;}

{P0:r0=1;P1:r0=0;}

{P0:r0=1;P1:r0=1;}<-C4 missed

Fig. 8. (left) Fig. 7 outcomes allowed by the RC11 model [25]. (right)
Outcomes of Téléchat-generated test allowed by the Arm AArch64 model [27].

We found hundreds of litmus tests that induce this behaviour

under RC11 [25] when compiled by either LLVM or GCC,

detailed in §IV-D. Fig. 7 implements the load buffering (LB)

pattern, known by concurrency experts. Further, we observe the

same behaviour when compiling to target Armv7 (unofficial),

IBM PowerPC, and RISC-V (official).

We conclude that Téléchat is deterministic unlike C4. In

other words, Téléchat observes the same test outcomes every

time. C4 requires that the hardware exhibits an outcome and

that users ‘stress-test’ [77] the hardware to reproduce it. Silicon

manufacturers may however implement restricted variants of

an architecture model (§II-A). C4 is not guaranteed to observe

the same outcomes on different machines, or even the same

machine. Indeed, Sarkar et. al [71] observe LB on an Apple A9

and Nvidia Tegra2 chips1, but Windsor et. al miss it [78] using

a Raspberry Pi. It is possible that developing C4’s metamorphic

relations may increase the chance of finding bugs, provided

the hardware provides a witness to miscompilation.

Téléchat is useful when hardware is inaccessible. For

instance, we assisted Arm’s engineers with a query from an Arm

partner, who proposed to change the compilation of C/C++

1https://www.cl.cam.ac.uk/∼pes20/arm-supplemental/arm001.html#toc5

339

https://www.cl.cam.ac.uk/~pes20/arm-supplemental/arm001.html#toc5

TABLE II
C4 VERSUS TÉLÉCHAT.

Component C4 [50], [77], [78] Téléchat

Test Generator - §II-A Memalloy [76] diy [11]
Test Environment - §II-B models+hardware models only
Source exec - §II-B herd [12] herd

Target exec litmus [10] herd

Testing method - § II-B Metamorphic Testing [51] Metamorphic & Differential Testing [79]
Models involved source source and architecture
System under test (SUT) Compiler + Hardware + OS Compiler
Found Bugs? Yes Yes [36]–[39]
Automatic No (must stress SUT) Yes
Coverage No Yes (up to fixed bounds)
General No Yes (parameterised over models)
Scalable Yes Yes
Deterministic No Yes

atomic acquire loads when targeting Armv8.3-a [58]. The

proposed change had promising performance characteristics

on unspecified hardware, but correctness was untested beyond

interpreting the Armv8.3-a specification. Arm’s compiler teams

accepted the proposal based on our findings.

Téléchat does not completely subsume the state-of-the-art as,

for example, simulation does not terminate when checking huge

systems (with thousands of LoC). C4 can do this. We expect

the success of Téléchat depends on validity of the small-scope

hypothesis, which we explore in §IV-E.

B. The Local Variable Problem

The local variable problem affects all state-of-the-art tech-

niques (§II-C) and masks a kind of bug that has evaded

detection. We discovered that, contrary to the state-of-the-art,

there are optimisations affecting only thread-local state that

influence concurrent program execution, giving rise to a new

class of bug. The problem is that there are transformations

allowed by the C/C++ model [22] that delete data required

to detect bugs. We reported a new bug of this kind [38] (see

Fig. 1), reproduced two bugs for Arm’s engineers, and present

our solution in Téléchat.

Consider the load buffering (LB) litmus test in Fig. 9. When

simulated using herd [12] the values of the local variables

P0:r0 and P1:r0 are recorded for use when checking

outcomes. C/C++ memory models [25] allow the compiler

to delete unused local data. Consequently, a litmus test that

refers to deletable data [22] in its final state - like P0:r0

and P1:r0 - will have no data to refer to if the compiler

removes it. When compiling Fig. 9 (left) with clang -O2

we get Fig. 9 (right - in C for illustration purposes). The only

allowed outcome of Fig. 9 (right) is { P0:r0=0; P1:r0=0

} since herd assumes data is zero-initialised.

Local reads of shared data are snapshots of that data at

particular points in a program’s execution. Several concurrency

patterns rely on local data to convey whether the reordering

of accesses leads to forbidden outcomes. For example, LB

demonstrates a notion of locality - for instance caches - that

buffer loads during execution. Local data reordering is common

in many processors - we cannot ignore it, even if the C/C++

model permits its removal.

{ *x = 0, *y = 0 }

void P0 (int* y,int* x) {

int r0 = *x; // unused

*y = 1;

}

void P1 (int* y,int* x) {

int r0 = *y; // unused

*x = 1;

}

exists

(P0:r0=1 /\ P1:r0=1)

{ *x = 0, *y = 0 }

void P0 (int* y,int* x) {

// deleted

*y = 1;

}

void P1 (int* y,int* x) {

// deleted

*x = 1;

}

exists

(P0:r0=1 /\ P1:r0=1)

Fig. 9. (left) Load Buffering (LB) litmus test. (right) Load Buffering test after
clang -O2 deletes unused data.

Testing techniques may miss bugs in optimisations that

delete local data. Such techniques cannot test the compilation

of LB unless local data persists. It is possible that an assembly

language register of the compiled program contains local data,

but compilers often reuse registers to reduce spilling. The state-

of-the-art (§II-C) relies only on source (e.g C/C++) models -

without testing if local deletion masks bugs.

Authors either overlook the issue [22], [77] or claim [66]

local optimisations cannot induce bugs (def. II.3). When asked

about local optimisations at the European LLVM conference

(2017)2, Chakraborty and Vafeiadis [22] state they focus

on “only the shared memory accesses”. Windsor et. al do

not address the issue [77]. Morisset et al. [66] claim that

“optimisations affecting only the thread-local state cannot induce

concurrency compiler bugs”. We question this [66] claim.

Fig. 10 induces a bug when thread-local optimisations delete

P1:r1. The outcome {P1:r0=0; y=2} is forbidden by the

C/C++ model, but allowed by the LLVM or GCC compilation

to Arm AArch64 when the assignment to P1:r1 by the read-

modify-write (RMW) operation is deleted. Past versions of

LLVM and GCC induce this bug when targeting Armv8.1-a

with the Large-Systems Extension. This example shows that

thread-local optimisations can induce concurrency bugs.

P1 uses an atomic fetch_add_explicit RMW op-

eration where the value read into P1:r1 is unused. This

induces two bugs using past versions of LLVM and GCC,

233:50 minutes in: https://www.youtube.com/watch?v=NR5OAhgdozc

340

https://www.youtube.com/watch?v=NR5OAhgdozc

{ *x = 0, *y = 0 }

#define relaxed memory_order_relaxed

void P0 (atomic_int* y,atomic_int* x) {

atomic_store_explicit(x,1,relaxed);

atomic_thread_fence(memory_order_release);

atomic_store_explicit(y,1,relaxed);

}

void P1 (atomic_int* y,atomic_int* x) {

int r1 = atomic_fetch_add_explicit(y,1,relaxed);

atomic_thread_fence(memory_order_acquire);

int r0 = atomic_load_explicit(x,relaxed);

}

exists (P1:r0=0 /\ y=2)

Fig. 10. Message Passing litmus test. The outcome {P1:r0=0; y=2} is
forbidden under the C/C++ model [25], but allowed by the Arm AArch64
model [27], since an LLVM thread-local optimisations can remove P1:r1.
The heisenbug arises if P1 does not observe the read of the RMW operation.

first by targeting the incorrect Arm instruction and second

by deleting P1:r1. In both cases the outcome {P1:r0=0;
y=2} is allowed by the LLVM or GCC compilation to Arm

AArch64, but forbidden by the C/C++ model. Engineers fixed

the first bug replacing the STADD instruction with LDADD.

The second bug is observed when the LLVM dead register

definitions pass [54] zeroes the destination-register of LDADD,

after P1:r1 is deleted - the bug is observed as LDADD aliases

STADD when the destination register is the zero register.

Finding these bugs without Téléchat required expertise and

two engineer years of work. Discussions involved Linux Kernel

maintainers, Arm AArch64 model authors, and GCC (and

LLVM) developers [33], [34], [55], [56]. We assisted Arm’s

compiler teams by reproducing the bugs and showing that the

latest versions of LLVM and GCC no longer exhibit them.

We added support for Fig. 10 (with and without int r1

= ...) to herd [35], allowing us to validate the fix. We

reported [38] a new bug of this kind in the implementation of

atomic_exchange featured in Fig. 1, but it is unclear if

more bugs like this exist.

Interestingly, these bugs disappear if one attempts to study

them. Historically, message passing tests check the reordering

of P1:r0 and P1:r1 - forcing the user to preserve local

data. If instead we delete P1:r1 and check the value of y

in the final state, then we see reordering. In other words, you

only find the bug through indirect observation - it is a new

kind of Heisenbug! Since current test generators implement the

historical case, it is no surprise that these bugs were discovered

manually until now.

We implement a solution in Téléchat. Téléchat augments

Fig. 9 with global variables that store local data at the end of

each thread. This augmentation is optional to allow thread-local

optimisations to be tested. The original code under test remains,

but with the additional constraint that local data persists after

compilation. We update the initial and final states to reflect

this new data. It is unsatisfactory to modify the test, but we

have found four bugs thus far [36]–[39]. We are open to better

solutions, if they exist.

C. Bug-Finding Campaign

Whilst developing Téléchat we reported two new concurrency

bugs [37], [39] in LLVM, and a missed optimisation [40] for

the MIPS backend of GCC. We propose two bug fixes that

Arm’s engineers are addressing, and note one line of inquiry

for compiling atomics in practice - all untested until now.

First, we reported a bug [37] in the compilation of 128-

bit sequentially consistent [49] loads. The bug occurs when a

sequentially consistent [49] atomic load is implemented using a

load pair instruction on Armv8.4. The Armv8.4 Large Systems

Extension (v2) ensures load or store pair instructions are single-

copy atomic [14], assuming accesses are 16-byte aligned to

normal memory. This means you can use an LDP instruction in

place of a potentially more expensive compare-and-swap (CAS)

loop. LDP has no ordering requirements however - LDP can be

reordered before a prior store of an atomic read-modify-write

operation that uses a CAS loop. We propose to fix sequential

consistency in LLVM by adding synchronisation, following

GCC [28].

Next, we reported a wrong-endian bug [39] in the com-

pilation of 128-bit atomic stores. Since AArch64 has 64-bit

register sizes, an 128-bit store is implemented using a pair of

64-bit registers. We report that the order registers are written to

memory is flipped by atomic store operations. This affects store-

release-exclusive pair instructions in CAS loops (for Armv8.3

or below), and individual store pair instructions (Armv8.4 or

above). We propose to flip the bits to fix the bug.

We reported [40] an optimisation opportunity in the MIPS

backend of GCC. Whilst developing Téléchat, we discovered

that GCC (and LLVM) are conservative in optimising in-

structions that access atomic data. Extra code is emitted,

since atomic-accessing code cannot inhabit branch delay

slots. GCC maintainers note that atomic data is considered

volatile for practical reasons, despite no change in com-

piled program outcomes (def. II.2) under models. Whether it

is still valid to treat atomic as volatile is further work.

The above bugs are in dark corners, difficult for experts to

find even when an excellent memory model exists. Without

Téléchat-style automation these faults are impossibly expensive

to test for in routine regression testing.

D. Large-Scale Differential Testing

We use Téléchat to conduct differential testing of LLVM

and GCC. We check compatibility between compilers, as code

generated by LLVM and GCC is often mixed together at link-

time or by operating systems, potentially inducing latent bugs

at runtime. We test compilation targeting multiple architectures

using commonly used flags for a large suite of tests. We ran

over 9 million tests that have 2 to 5 threads, up to 5 shared

variables, and up to 50 lines of compiled assembly code. On

each thread Téléchat removes around 4 lines of (compiled)

code per access. As far as we know this is the most extensive

concurrency testing campaign to date. We test:

• Compilers: LLVM and GCC compiling C/C++ to target

Armv8 AArch64 (64-bit), Armv7-a (32-bit), RISC-V, Intel

x86-64, IBM PowerPC, and MIPS.

341

TABLE III
WE TEST COMBINATIONS OF C/C++ constructs × Compiler Under Test × Flags × Arch.

C/C++ constructs: (atomic operations|non-atomic operations

|fences|control-flow|straight-line code)+

Compiler under test: (LLVM|GCC)

Optimisation flags: (-O1|-O2|-O3|-Ofast|-Og)+

Target Architecture: (Armv8 AArch64 (64-bit official)|Armv7-a (32-bit unofficial)|RISC-V (64-bit official)

|Intel x86-64 (64-bit)| MIPS (64-bit)|IBM PowerPC (64-bit))

TABLE IV
TEST RESULTS - TAKES 9 HOURS AND 40 MINUTES ON A 224 CORE THUNDERX2 USING 100GB RUNTIME FOOTPRINT. CLANG DOES NOT SUPPORT -OG

FLAG. 167,184 C TESTS INPUT, 9,027,936 COMPILED TESTS OUTPUT, TOTAL: 9,195,120. TOTAL % = SUM(ROW)/COMPILED TESTS OUTPUT * 100 (3 SF).
THESE RESULTS WERE COLLECTED USING THE RC11 MODEL [48], ALL POSITIVE DIFFERENCES DISAPPEAR IF LOAD BUFFERING IS PERMITTED.

-O1 -O2 -O3 -Ofast -Og Total %

Armv8 AArch64 (64-bit) clang/gcc
+ve 2352/2352 2352/2352 2352/2352 2353/2352 -/2352 0.23%
-ve 44300/44300 44300/44300 44300/44300 44300/44300 -/44300 4.42%

Armv7-a (32-bit) clang/gcc
+ve 2352/3480 2352/2352 2352/2352 2352/2352 -/2352 0.25%
-ve 68228/69890 68228/70220 68228/70220 68228/70220 -/70220 6.91%

RISC-V (64-bit) clang/gcc
+ve 2352/2352 2352/2352 2352/2352 2352/2352 -/2352 0.23%
-ve 34204/70772 34204/70772 34204/70772 34204/70772 -/70772 5.44%

IBM PowerPC (64-bit) clang/gcc
+ve 2352/2352 2352/2352 2352/2352 2352/2352 -/2352 0.23%
-ve 43956/43956 43956/43956 43956/43956 43956/43956 -/43956 4.38%

Intel x86-64 (64-bit) clang/gcc
+ve 0/0 0/0 0/0 0/0 -/0 0.0%
-ve 64112/64112 64112/64112 64112/64112 64112/64112 -/64112 6.39%

MIPS (64-bit) clang/gcc
+ve 0/0 0/0 0/0 0/0 -/0 0.0%
-ve 69664/72488 69664/72008 69664/72008 69664/72008 -/72488 7.09%

• Optimisation levels for each compiler: -O1, -O2, -O3,

-Ofast, and for GCC -Og.

• Compare a compiler with itself at increasing levels of

optimisation, e.g. clang -O1 vs. clang -O2.

• Compare LLVM with GCC at each optimisation level, e.g

clang -O1 vs. gcc -O1.

Tab. III defines all the combinations of test, compiler, and

architecture under test. Our tests feature code that perturbs

the order accesses hit memory including control-flow, atomic

operations, non-atomic operations, fences, and straight-line

code. We test using both signed and unsigned integers ranging

from 8-bits up to 64-bits in size. We test both LLVM and GCC

with the optimisations and architectures above.

Following the steps in §III-A, we generate multiple source

C/C++ test sets enumerating the features in Tab. III us-

ing diy [11]. For each test set, we use Téléchat with

the compiler under test to generate multiple assembly test

sets according to multiple compiler profiles. Each profile

captures the compiler tool-chain (& flags), architecture (&

model), disassembler (& flags), and symbol table reader. For

instance, the llvm-O3-AArch64 profile tests: clang -O3

using the AArch64 GNU/Linux bare-metal tool-chain and

gnu-objdump. Both source and target tests are passed to

herd for simulation under the RC11 [25] and Arm AArch64

model [27] respectively (resp. target architecture models).

Lastly, mcompare compares outcomes to find outcomes

(def. II.2) of the compiled program outcomesC that are not

outcomes of the source program outcomesS :

• positive differences (+ve): outcomesC ̸⊆ outcomesS
• negative differences (-ve): outcomesC ⊂ outcomesS .

(negative differences can occur since both optimisations and

architecture models can constrain behaviour).

Tab. IV details our results. Tab. IV suggests Téléchat is

effective as it found tricky concurrency behaviours hidden in

over 9 million compiled tests, given 167,184 tests as input.

The 2352 positive differences common to Armv8 (official),

Armv7 (unofficial), RISC-V (official), and IBM PowerPC are

due to 294 variants of the load buffering pattern in Fig 7. When

comparing llvm-O1-ARM +ve (2352) and gcc-O1-ARM +ve

(3480) we discovered two behaviours in GCC and LLVM. Re-

ordering is observed using -O1 when a control dependency is

removed, but the behaviour is masked at higher optimisation

levels by a data dependency (-O2 and above). Since Intel x86-

64 implements the total-store order model [72] there are are

no differences. This suggests Téléchat is an effective compiler

testing tool.

To be clear, these positive differences are not bugs in today’s

compilers, since we used the RC11 model [48] that is not

ratified by the C/C++ standards. The ISO C/C++ standards

explicitly permit load-to-store reordering (§7.17.3 of C23 [46]),

whereas RC11 forbids it. Téléchat is parameterised over models,

and we repeat testing using a modified rc11+lb.cat model

to show that all of the above behaviours disappear when load-

to-store ordering is permitted.

342

Many differences in Tab. IV arise from data races. The

C/C++ model flags data races as undefined behaviour, and we

ignore false positives on that basis. Of course, we assume the

models are correct, which is a limitation we accept given these

promising results.

E. Limitations of Model-based Testing

Our technique has three limitations: model correctness,

model completeness, and simulation scalability. When explor-

ing each case we found new bugs detailed below.

We assume the source and target models are correct. We

found a bug in the (unofficial) Armv7 model [8] that the state-

of-the-art techniques miss. We found a bug when compiling

for the Armv7-a architecture using a Store Buffering litmus

test. The outcome of the test was allowed by the unofficial

Armv7 model [8], but is forbidden by the RC11 model [25]

and the Armv7 hardware we checked. The problem was that

the Armv7 model was allowing accesses to be reordered when

it should have been forbidden. We reported the bug and fixed

the model [35]. As the state-of-the-art (§II-C) depends only

on source models this limitation is unique to Téléchat.

Next, we assume that models support language features under

test. We reported [36] a bug in the implementation of 128-bit

const atomic loads. We found that const was miscompiled

when loading constant atomic data - it crashes at run-time as

the C/C++ load is implemented using a store instruction that

attempts to write to read-only memory. Simulation under the

Arm AArch64 model [27] will miss this bug, as const read-

only memory is unsupported, and so we augment the model

to flag const violations. Whilst conducting this study a fix

was proposed in LLVM by engineers [57], but the problem

remains as the fix only applies to Armv8.4 or above (similar

code exists for Intel x86-64, RISC-V, IBM PowerPC backends).

Upon discussing this bug with Arm’s compiler engineers, we

conclude there is no (lock-free) fix for Armv8.0, since the 128-

bit load instruction is not guaranteed to be single-copy atomic

unless the Armv8.1 Large Systems Extension is implemented.

Lastly, the state explosion problem limits the bounds of what

herd can test. Consider Fig. 11 that extends Fig. 7 with an

additional thread P2. If Fig. 11 is compiled and simulated

under the Arm AArch64 model [27], then herd does not

terminate with a one hour timeout. Since herd enumerates

executions, it suffers from the state-explosion problem. Without

optimisation, execution time of assembly litmus tests expands

factorially as the test size increases, practically limiting herd’s

ability to scale much above programs of the order of 40-50

lines of code.

We sidestep the state explosion problem by optimising

compiled litmus tests. The problem depends on the size of

compiled program executions. Whilst herd considers int r0

= *x to be one load of x and one store to r0, the compiled

program uses many instructions. For every C/C++ access in

the source program, LLVM or GCC generates at least three

Arm assembly instructions: ADRP to calculate the pointer to x,

a LDR to load the location x into a register, and a LDR to load

the value of x. As each instruction generates multiple loads or

{ *x = 0, *y = 0 }

void P0 (int* y,int* x) {

int r0 = *x;

atomic_thread_fence(memory_order_relaxed);

*y = 1;

}

void P1 (int* z,int* y) {

int r0 = *y;

atomic_thread_fence(memory_order_relaxed);

*z = 1;

}

void P2 (int* z,int* x) {

int r0 = *z;

atomic_thread_fence(memory_order_relaxed);

*x = 1;

}

exists (P0:r0=1 /\ P1:r0=1 /\ P2:r0=1)

Fig. 11. A C/C++ litmus test, when compiled targeting Arm AArch64 does
not terminate under simulation.

stores, the number of events in target executions is an order

of magnitude larger than executions of the source. Computing

whether such a graph is allowed using herd induces a

state explosion as each LDR contributes to the reads-from

relation (def. II.1). We optimise ADRP *x;LDR;LDR/STR

x ⇝ LDR/STR x sequences in Téléchat, and contribute a

suite of similar optimisations for each architecture we test.

Using Téléchat, simulating the compiled Fig. 11 terminates

in milliseconds. Checking the soundness of our optimisations

is future work, but an informal argument is that the herd

simulator uses symbolic locations. The locations associated

with accesses we remove cannot be named by other threads

and an access cannot side-effect other symbolic locations.

Soundness depends on the non-interference of other threads

after applying our optimisations. Scalability is a still problem

in theory, but in practice we only see timeouts with large (5+

threads or 6+ shared variables) tests.

We end by discussing our working hypothesis. Many

authors [32], [42], [66] claim simulation is unlikely to scale.

For instance, Morisset et al. claim [66]: “[herd] is unlikely to

scale to the complexity of hunting C11/C++11 compiler bugs.”

There is however a decade of evidence to suggest small (two

threads at around twenty LoC) litmus tests are effective in

finding bugs in hardware implementations [10], Arm hardware

designs [44], GPUs [1], the Linux Kernel [9], C/C++ [48], [74],

and more. Since every concurrency compilation bug we know

of can be demonstrated by a small litmus test, we question

whether simulation needs to scale. We expect the small-scope

hypothesis [68] holds: “that a high proportion of errors can

be found by testing a program for all test inputs within some

small scope”. Whether there are bugs that are triggered by

large-programs only is an area for future work.

F. Industry Impact

We improved compilers - used in industry - in two ways.

We answered queries from Arm’s partners [58] and deployed

automated regression testing for Arm Compiler. Téléchat is

the first tool of its kind to be deployed in industry.

343

We assisted Arm’s engineers with a query from Google [58]

engineers. Following compelling performance metrics on

hardware, Google’s engineers proposed to change the imple-

mentation of C/C++ acquire loads to use the LDAPR instruction

instead of LDAR when the Armv8.3-a weak release consistency

extension is enabled. The LDAPR instruction allows more re-

orderings than LDAR, however experts failed to find a bug under

this proposal. Reviewers were inclined to accept the proposal

without a correctness proof, but the proof was estimated to take

three months. With Téléchat, we provided experimental testing

of the proposal and Arm’s compiler team chose to accept the

proposal based on our work [58].

Lastly, we deployed automatic regression testing of Arm

Compiler. Arm’s compiler teams wish to test whether Arm

Compiler correctly translates concurrent C/C++ programs

targeting the Armv7 and Armv8 architectures. We conduct

differential testing of Arm Compiler and deployed Téléchat in

their automated testing infrastructure using an artefact like the

one we provide with this work. As far as we know, Téléchat is

the first compiler testing tool (for concurrency) to be deployed

in a production setting - it is an industry first.

V. CONCLUSIONS AND FURTHER WORK

We present the Téléchat automated compiler testing tech-

nique for programs with relaxed memory concurrency seman-

tics. We documented its design (§III-A) and implementation

(§III-B) with a reproducible artefact. We show how it improves

on the state-of-the-art (§IV-A) and the real-world benefits [58]

Téléchat brings when assisting Arm’s compiler team. We refute

a claim [66] made by the state-of-the-art whilst exploring a

novel kind of concurrency bug (§IV-B) that evaded detection un-

til now. We conducted large-scale differential testing of LLVM

and GCC (§IV-D), which is the most extensive concurrency

test campaign to date as far as we know. We assisted Arm’s

compiler team with two queries [58] from Arm’s partners,

reported four new bugs [36]–[39], and found one behaviour

known by concurrency experts but missed by the state-of-the-

art (Fig. 7). We fixed a bug in the Armv7 model [35], and

generated several new lines of inquiry whilst exploring the

limitations of our work (§IV-E). Lastly, Téléchat is, as far as

we know, the industry’s first concurrency tool to be deployed

in automated testing for Arm Compiler.

We sought a practical bug (def. II.3) finding technique for

production compilers. By using official architecture models, we

achieve this goal, but defer a soundness proof to future work.

Proving soundness requires a model of ground truth [17]. Such

a model changes with business pressures; thus fixing a ground

truth is a challenge. Even the official Armv8 model [27] forbids

many behaviours of the older Arm model as no implementer

has built a machine that exploited its additional relaxations3.

The C/C++ model sees similar evolutions [18], [19], [21], [48],

[74] and challenges for compiler engineers to avoid out-of-

thin-air behaviours. For soundness to hold as compilers and

models are updated, automating model-based proof [23], [29],

3The Armv8 model is experimentally stronger [62] than the Armv7 model.

[69] for production compilers is desirable. In the absence of

repeatable proof, Téléchat provides practical testing.

Test generation is an area for future work. Fig. 10 induces

two bugs in past versions of LLVM and GCC. We expect that

exploring the state-space of litmus tests or conducting mutation-

based testing [47] will find more bugs. The Alive2 [60] tool

finds bugs whilst exploring the state space of sequential tests;

but it is unknown whether it scales to concurrent programs

in light of the state explosion (§IV-E) problem. Windsor et

al. [78] conduct metamorphic testing of LLVM, but miss the

bugs we report [36], [37], [39] - we expect there are more

bugs out there. We just need the tests to find them.

We present new lines of inquiry for compiler testing. The

field of testing with (C/C++) models is over a decade old - we

feared little progress could be made. Indeed, recent work [4],

[20], [70] focuses instead on the porting problem. We uncovered

new lines of inquiry that suggest there is still work to be

done. One such line - inspired our const work (§IV-E) - is

studying the interaction between sequential and concurrent

C/C++. const atomic loads induce run-time crashes [36],

but it is unclear how such types are used in practice. The call

for clarity on the compilation of atomics increases as multi-core

machines play an increasing role in our lives.

DATA-AVAILABILITY STATEMENT

The data that support the findings of this study are openly

available in Zenodo https://doi.org/10.5281/zenodo.10204529,

with the reference [41].

ACKNOWLEDGMENT

We thank supervisors James Brotherston and Earl Barr. Luc

Maranget, Ana Farinha, Alastair Donaldson, John Wickerson,

Tyler Sorensen, Shale Xiong, Alastair Reid, Peter Smith, Wilco

Dijkstra, Arm’s Compiler Teams and Arm Architecture &

Technology Group for their feedback and assistance. This

work was supported by the Engineering and Physical Sciences

Research Council [grant number EP/V519625/1]. The views of

the authors expressed in this paper are not endorsed by Arm

or any other company mentioned.

ARTEFACT APPENDIX

A. Abstract

The artefact consists of the Téléchat tool and scripts provided

with this paper. Téléchat builds on the herd tool-suite [5] and its

models. As such the results are liable to change. We acquired all

badges. For comments please contact luke.geeson@cs.ucl.ac.uk.

B. Artefact Checklist

1) Algorithm: Téléchat.

2) Program: l2c,c2s,s2l and herdtools [5].

3) Compilation: Includes LLVM 11, GCC 9.2, GCC 10.

4) Models: From herd toolsuite [5].

5) Data Set: Tests generated using provided c11.conf.

6) Test Environment/Binary: Docker Ubuntu 20.04.

7) Hardware: Either x86-64 or Arm AArch64 machines.

8) Run-time State: not sensitive to run-time state.

344

https://doi.org/10.5281/zenodo.10204529
luke.geeson@cs.ucl.ac.uk

9) Metrics: Outcomes of executing tests under models.

10) Output: Console and .log files.

11) Experiments: Makefile provided reproduces results.

12) Disk-space requirements: 5GB for Docker image,

+100GB for the large-scale study (§IV-D).

13) Time needed to prepare workflow: Everything is ready.

14) Time needed to complete experiments: ∼ 10 hours.

15) Licenses: CeCILL-B license.

16) Workflow Frameworks: Makefile, GNU Parallel [73].

17) Archived(DOI): https://doi.org/10.5281/zenodo.

10204529

18) Available: Zenodo or Docker Hub4.

C. Description

1) How Delivered: The artefact is available on Zenodo and

consists of a Docker container with the Téléchat tool, compilers

under test, and scripts required to reproduce results.

2) Hardware Dependencies: Either an Intel x86-64 or Arm

AArch64 based machine. The artefact was tested using a

MacBook Pro with a dual-core Intel i7 CPU, a Lenovo P720

with 2xIntel Xeon Gold 5120T CPUs (56 cores), a MacBook

Air with an 8-core Apple M1 (Arm AArch64), a Cavium

Thunder X2 with 2x28-core CPUs (Arm AArch64), and under

x86-64 emulation (using the M1 machine).

3) Software Dependencies: Téléchat requires a Linux distri-

bution such as Ubuntu. Including:

• The C/C++ compiler under test (multi-lib cross-compilers

work best on multiple platforms).

• GNU binutils, e.g. binutils-riscv64-linux-gnu.

• GNU Parallel [73], libxml2, time, and libc6

D. Installation

1) Download and install Docker. For example on Ubuntu

20.04 you can install docker using the official guide5

2) Download telechat-artefact-arch.tar.gz

from Zenodo (where arch is either arm64 or x86).

3) Load the Docker container:

> docker load -i \

telechat-artefact-arch.tar.gz

4) Run the Image:

> docker run -it \

lukeg101/telechat-artefact

This runs the Ubuntu image and mounts the current

directory into the container at artefact-output.

Alternatively, if you wish to install from Docker Hub, we

provide Intel x86-64 and Arm AArch64 builds:

> docker pull \

lukeg101/telechat-artefact:latest

Then run:

> docker run -it \

lukeg101/telechat-artefact:latest

4https://hub.docker.com/r/lukeg101/telechat-artefact/tags
5https://docs.docker.com/desktop/install/ubuntu/

E. Experiment Workflow

A Makefile drives the Téléchat toolchain, and examples

of how to use it are provided in the README.md. For example,

to run the “smoketest” in the docker container, type:

artefact> make examples

The Readme contains instructions on how to customise testing

and generate different test benchmarks.

F. Paper Claims

1) Fig. 7 has outcomes in Fig. 8 (left). under the RC11

model [48], when compiled for Arm AArch64, it has the

Fig.8 (right) outcomes.

2) Windsor et. al miss [78] miss the load buffering behaviour

of Fig.7. Téléchat observes it.

3) We exercise all the features in Table III. when testing

LLVM and GCC for the architectures listed.

4) We get the results in Table IV under the RC11 model [48],

but if we permit load-to-store reordering all positive

differences disappear.

5) Compiling and Optimising Fig.11 using Téléchat enables

its simulation to terminate in milliseconds.

A number of minor claims appear in the paper, like how we

added a vector datatype to herd. To keep this appendix small

we refer the reader to Téléchat generated tests that use these

features. To validate the bug reports, please see our bug board6

G. Evaluation and Expected Results

We assume you are running with a clean directory.

Claim 1 (< 5 minutes on an Apple M1 machine):

Please run:

artefact> make examples

Check the log:

artefact> cat artefact-output/Output/logs\

/examples_int_C_tests_llvm-O3-AArch64_\

mcompare.log

The source and compiled program outcomes are tabulated,

LB004_examples_int_C_tests has new behaviour:

c11_[...]_tests a64_[...]_tests

[0:r0=0; 1:r0=0;] +[P0_r0=1; P1_r0=1;]

[0:r0=0; 1:r0=1;]

[0:r0=1; 1:r0=0;]

Claim 2 (< 1 minute checking manually):

Windsor et. al [78] state:

“we experimented with using the stronger RC11

memory model of Lahav et al. [48] as the input

to our test-case generator, RMEM [a simulator

parameterised over architecture models, not part

of C4] identified as a bug the ‘load buffering’ test

that RC11 forbids, but C11 and AArch64 permit.”

6https://lukegeeson.com/blog/2023-10-17-Telechat-Bug-Board/

345

https://doi.org/10.5281/zenodo.10204529
https://doi.org/10.5281/zenodo.10204529
https://hub.docker.com/r/lukeg101/telechat-artefact/tags
https://docs.docker.com/desktop/install/ubuntu/
https://lukegeeson.com/blog/2023-10-17-Telechat-Bug-Board/

We observe load buffering (Figs.7+8) in Claim 1.

Claim 3 (∼ 10 hours on a 224 core ThunderX2):

Please run:

artefact> make all CONF_FILE=c11.conf

Warning: This requires a powerful machine to run.

Once done, the Output directory should reveal tests that

contain the following: fence, *x, if, atomic_load,

atomic_store, clang-11, gcc-10, -O1, -O2,-O3,

-march=armv7, -march=x86-64, -march=mips64,

powerpc-linux-gnu, aarch64-linux-gnu,

riscv64-pclinux-gnu, and so on. . .

Claim 4 (∼ 10 hours on a 224 core ThunderX2):

Please run:

artefact> make all CONF_FILE=c11.conf

Once done, the numbers in Table IV should match the

+ve and -ve differences listed on the console output. Since

the C/C++ standards permit load-to-store re-ordering (ie load

buffering), observe that all of the +ve differences go away

when we use the rc11+lb.cat model:

artefact> make all CONF_FILE=c11.conf \

CMEM=rc11+lb.cat

Warning: This requires a powerful machine to run.

Claim 5 (< 5 minutes on an Apple M1 machine):

Please run:

artefact> make examples

And then you can see the compiled (and optimised) Fig.10:

artefact> cat artefact-output/Output\

/examples_int_C_tests/tgt/llvm-O3-AArch64\

/3.LB004_examples_int_C_tests.litmus

Simulation timings are in the herd log:

artefact> cat artefact-output/Output \

/examples_int_C_tests/tgt/ \

llvm-O3-AArch64/all_a64_llvm-O3-\

AArch64_examples_int_C_tests.log

Observe that simulation took ∼3 milliseconds (subject to

your CPU clock speed and memory latency):

Test 3.LB004_examples_int_C_tests Allowed

States 8

[P0_r0]=0; [P1_r0]=0; [P2_r0]=0;

[P0_r0]=0; [P1_r0]=0; [P2_r0]=1;

[...]

Time 3.LB004_examples_int_C_tests 0.03

On the other hand, Consider the unoptimised.litmus

test, adapted from LLVM-11 code taken from godbolt.org7

7https://godbolt.org/z/G9b4Pq1YK

(which is the same as 3.LB004) that we have not seen

terminate after running for 1 hour on an Apple M1 machine:

artefact> make dnf

Warning: It is unclear whether herd terminates with this input

This motivates our need to optimise compiled litmus tests.

H. Experiment Customisation

You can customise the experiments when invoking Make:

• Generate different C/C++ tests using a config file (default:

None, options: c11.conf, c11_acq.conf):

artefact> make examples \

CONF_FILE=c11.conf

• Set source model (default rc11.cat, options:

c11_partialSC.cat,c11_simp.cat,rc11.cat,

rc11+lb.cat):

artefact> make examples \

CMEM=c11_simp.cat

• Set simulation timeout, (default 120.0 seconds):

artefact> make examples TIMEOUT=1.0

• Test other compilers. Outside the container, add a profile

to profiles.json, add the profile name (such as

llvm-O3-AArch64) to the PROFILE variable in the

Makefile, add the MODEL_profile to the Makefile,

and re-run ./build.sh && ./run.sh.

I. Available Benchmarks

The benchmarks used can be generated by providing a

CONF_FILE parameter to the Makefile:

• §IV.D: c11.conf: for the large-scale differential testing

• §IV.F: c11_acq.conf: for the LDAPR case study

This article represents a personal opinion that is not endorsed

by Arm.

REFERENCES

[1] ALGLAVE, J., BATTY, M., DONALDSON, A. F., GOPALAKRISHNAN,
G., KETEMA, J., POETZL, D., SORENSEN, T., AND WICKERSON, J.
GPU Concurrency: Weak Behaviours and Programming Assumptions. In
Proceedings of the Twentieth International Conference on Architectural

Support for Programming Languages and Operating Systems (New York,
NY, USA, 2015), ASPLOS ’15, ACM, p. 577–591.

[2] ALGLAVE, J., COUSOT, P., AND MARANGET, L. Syntax and semantics
of the weak consistency model specification language cat. CoRR

abs/1608.07531 (2016).

[3] ALGLAVE, J., DEACON, W., GRISENTHWAITE, R., HACQUARD, A.,
AND MARANGET, L. Armed Cats: Formal Concurrency Modelling at
Arm. ACM Trans. Program. Lang. Syst. 43, 2 (July 2021).

[4] ALGLAVE, J., KROENING, D., NIMAL, V., AND POETZL, D. Don’t Sit
on the Fence: A Static Analysis Approach to Automatic Fence Insertion.
ACM Trans. Program. Lang. Syst. 39, 2 (May 2017).

[5] ALGLAVE, J., AND MARANGET, L. herdtools7. https://github.com/herd/
herdtools7, 2021. Accessed: 2019-10-06.

[6] ALGLAVE, J., AND MARANGET, L. NEON Architecture Tests.
https://github.com/herd/herdtools7/tree/master/herd/tests/instructions/
AArch64.neon, 2021. Accessed: 2022-11-29.

[7] ALGLAVE, J., AND MARANGET, L. SVE Architecture Pull Request.
https://github.com/herd/herdtools7/pull/414, 2021.

[8] ALGLAVE, J., AND MARANGET, L. ARM memory model. https://github.
com/herd/herdtools7/blob/master/herd/libdir/arm.cat, 2022.

346

https://godbolt.org/z/G9b4Pq1YK
https://github.com/herd/herdtools7
https://github.com/herd/herdtools7
https://github.com/herd/herdtools7/tree/master/herd/tests/instructions/AArch64.neon
https://github.com/herd/herdtools7/tree/master/herd/tests/instructions/AArch64.neon
https://github.com/herd/herdtools7/pull/414
https://github.com/herd/herdtools7/blob/master/herd/libdir/arm.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/arm.cat

[9] ALGLAVE, J., MARANGET, L., MCKENNEY, P. E., PARRI, A., AND

STERN, A. Frightening Small Children and Disconcerting Grown-ups:
Concurrency in the Linux Kernel. In Proceedings of the Twenty-Third

International Conference on Architectural Support for Programming

Languages and Operating Systems (New York, NY, USA, 2018), ASPLOS
’18, ACM, pp. 405–418.

[10] ALGLAVE, J., MARANGET, L., SARKAR, S., AND SEWELL, P. Litmus:
Running Tests Against Hardware. In Proceedings of the 17th International

Conference on Tools and Algorithms for the Construction and Analysis

of Systems: Part of the Joint European Conferences on Theory and

Practice of Software (Berlin, Heidelberg, 2011), TACAS’11/ETAPS’11,
Springer-Verlag, pp. 41–44.

[11] ALGLAVE, J., MARANGET, L., SARKAR, S., AND SEWELL, P. Fences
in Weak Memory Models (Extended Version). Form. Methods Syst. Des.

40, 2 (Apr. 2012), 170–205.
[12] ALGLAVE, J., MARANGET, L., AND TAUTSCHNIG, M. Herding Cats:

Modelling, Simulation, Testing, and Data Mining for Weak Memory.
ACM Trans. Program. Lang. Syst. 36, 2 (July 2014), 7:1–7:74.

[13] ARM-LIMITED. Arm Morello Program. https://developer.arm.com/
architectures/cpu-architecture/a-profile/morello. Accessed: 2023-03-23.

[14] ARM-LIMITED. Arm Architecture Reference Manual. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2023.

[15] ARMSTRONG, A., CAMPBELL, B., SIMNER, B., PULTE, C., AND

SEWELL, P. Isla: Integrating full-scale ISA semantics and axiomatic
concurrency models. In In Proc. 33rd International Conference on

Computer-Aided Verification (July 2021).
[16] ATIG, M. F., BOUAJJANI, A., BURCKHARDT, S., AND MUSUVATHI, M.

On the Verification Problem for Weak Memory Models. In Proceedings

of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (New York, NY, USA, 2010), POPL ’10,
Association for Computing Machinery, p. 7–18.

[17] BARR, E. T., HARMAN, M., MCMINN, P., SHAHBAZ, M., AND YOO, S.
The Oracle Problem in Software Testing: A Survey. IEEE Trans. Softw.

Eng. 41, 5 (May 2015), 507–525.
[18] BATTY, M., DONALDSON, A. F., AND WICKERSON, J. Overhauling SC

Atomics in C11 and OpenCL. In Proceedings of the 43rd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(New York, NY, USA, 2016), POPL ’16, Association for Computing
Machinery, p. 634–648.

[19] BATTY, M. J. The C11 and C++11 Concurrency Model. PhD thesis,
University of Cambridge, 2014.

[20] BECK, M., BHAT, K., STRICEVIC, L., CHEN, G., BEHRENS, D., FU, M.,
VAFEIADIS, V., CHEN, H., AND HÄRTIG, H. AtoMig: Automatically
Migrating Millions Lines of Code from TSO to WMM. In Proceedings

of the 28th ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, Volume 2, ASPLOS

2023, Vancouver, BC, Canada, March 25-29, 2023 (2023), T. M. Aamodt,
N. D. E. Jerger, and M. M. Swift, Eds., ACM, pp. 61–73.

[21] BOEHM, H.-J., AND ADVE, S. V. Foundations of the C++ Concurrency
Memory Model. In Proceedings of the 29th ACM SIGPLAN Conference

on Programming Language Design and Implementation (New York, NY,
USA, 2008), PLDI ’08, Association for Computing Machinery, p. 68–78.

[22] CHAKRABORTY, S., AND VAFEIADIS, V. Validating Optimizations of
Concurrent C/C++ Programs. In Proceedings of the 2016 International

Symposium on Code Generation and Optimization (New York, NY, USA,
2016), CGO ’16, ACM, pp. 216–226.

[23] CHAKRABORTY, S., AND VAFEIADIS, V. Grounding Thin-air Reads
with Event Structures. Proc. ACM Program. Lang. 3, POPL (Jan. 2019),
70:1–70:28.

[24] CHEN, J., PATRA, J., PRADEL, M., XIONG, Y., ZHANG, H., HAO, D.,
AND ZHANG, L. A Survey of Compiler Testing. ACM Comput. Surv.

53, 1 (Feb. 2020).
[25] COLIN, S. RC11 Memory Model. https://github.com/herd/herdtools7/

blob/master/herd/libdir/rc11.cat, 2022. Accessed: 2022-06-30.
[26] COOK, S. A. The Complexity of Theorem-Proving Procedures. In

Proceedings of the Third Annual ACM Symposium on Theory of

Computing (New York, NY, USA, 1971), STOC ’71, ACM, p. 151–158.
[27] DEACON, W., AND ALGLAVE, J. Armv8 AArch64 Mem-

ory Model. https://github.com/herd/herdtools7/blob/master/herd/libdir/
aarch64.cat, 2021.

[28] DIJKSTRA, W. Bug 108891 - libatomic: AArch64 SEQ CST 16-byte load
missing barrier. https://gcc.gnu.org/bugzilla/show bug.cgi?id=108891.

[29] DODDS, M., BATTY, M., AND GOTSMAN, A. Compositional Verification
of Compiler Optimisations on Relaxed Memory. In Programming

Languages and Systems (Cham, 2018), A. Ahmed, Ed., Springer
International Publishing, pp. 1027–1055.

[30] DONALDSON, A. F., EVRARD, H., LASCU, A., AND THOMSON, P.
Automated Testing of Graphics Shader Compilers. Proc. ACM Program.

Lang. 1, OOPSLA (Oct. 2017).
[31] EIDE, E., AND REGEHR, J. Volatiles Are Miscompiled, and What to Do

About It. In Proceedings of the 8th ACM International Conference on

Embedded Software (New York, NY, USA, 2008), EMSOFT ’08, ACM,
pp. 255–264.

[32] GAVRILENKO, N., PONCE DE LEÓN, H., FURBACH, F., HELJANKO, K.,
AND MEYER, R. BMC for Weak Memory Models: Relation Analysis for

Compact SMT Encodings. 07 2019, pp. 355–365.
[33] GCC-MAILING-LIST. [PATCH, AArch64 v2 05/11] aarch64: Emit

LSE stop instructions. https://gcc.gnu.org/legacy-ml/gcc-patches/2018-
10/msg01960.html, 2018. Accessed: 2020-13-06.

[34] GCC-MAILING-LIST. [PATCH, AArch64 v2 05/11] aarch64: Emit
LSE stop instructions. https://gcc.gnu.org/legacy-ml/gcc-patches/2018-
10/msg02042.html, 2018. Accessed: 2020-13-06.

[35] GEESON, L. Added dmb ish to arm model. https://github.com/herd/
herdtools7/pull/385, 2022. Accessed: 2022-11-26.

[36] GEESON, L. [AArch64]: 128-bit Const Atomic Load implemented
using Store Pair instruction, induces Runtime Crash on Arm AArch64.
https://github.com/llvm/llvm-project/issues/61770, 2023.

[37] GEESON, L. [AArch64]: 128-bit seq cst load can be reordered before
prior RMW operations under LSE and above. https://github.com/llvm/
llvm-project/issues/62652, 2023. Accessed: 2023-05-11.

[38] GEESON, L. [AArch64]: Atomic Exchange Allows Reordering past
Acquire Fence . https://github.com/llvm/llvm-project/issues/68428, 2023.

[39] GEESON, L. [AArch64][CodeGen]: LD{AX}P/S{LX}TP endian swap.
https://github.com/llvm/llvm-project/issues/61431, 2023.

[40] GEESON, L. branch delay slots are not filled with atomic stores. https:
//gcc.gnu.org/bugzilla/show bug.cgi?id=110573, 2023.

[41] GEESON, L., AND SMITH, L. CGO Artefact for Compiler Testing With
Relaxed Memory Models. https://doi.org/10.5281/zenodo.10411403, Dec.
2023.

[42] HAAS, T., MEYER, R., AND PONCE DE LEÓN, H. CAAT: Consistency
as a Theory. Proc. ACM Program. Lang. 6, OOPSLA2 (oct 2022).

[43] HEIDEKRÜGER, P., AND ELVER, M. Status report: Broken dependency
orderings in the linux kernel. https://lpc.events/event/16/contributions/
1174/, 2022. Accessed: 2022-26-11.

[44] HSIAO, Y., MULLIGAN, D. P., NIKOLERIS, N., PETRI, G., AND

TRIPPEL, C. Synthesizing Formal Models of Hardware from RTL for
Efficient Verification of Memory Model Implementations. In MICRO-54:

54th Annual IEEE/ACM International Symposium on Microarchitecture

(New York, NY, USA, 2021), MICRO ’21, ACM, p. 679–694.
[45] INTEL. Pin. https://www.intel.com/content/www/us/en/developer/articles/

tool/pin-a-dynamic-binary-instrumentation-tool.html, 2013.
[46] ISO-C-STD, O. ISO/IEC 9899:201x. https://www.open-std.org/jtc1/

sc22/wg14/www/docs/n2912.pdf, 2022. Accessed: 2023-11-10.
[47] KUSANO, M., AND WANG, C. CCmutator: A Mutation Generator for

Concurrency Constructs in Multithreaded C/C++ Applications. In Pro-

ceedings of the 28th IEEE/ACM International Conference on Automated

Software Engineering (2013), ASE’13, IEEE Press, p. 722–725.
[48] LAHAV, O., VAFEIADIS, V., KANG, J., HUR, C.-K., AND DREYER,

D. Repairing Sequential Consistency in C/C++11. PLDI 2017, ACM,
pp. 618–632.

[49] LAMPORT, L. How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs. IEEE Trans. Comput. 28, 9 (Sept.
1979), 690–691.

[50] LASCU, A., WINDSOR, M., DONALDSON, A. F., GROSSER, T., AND

WICKERSON, J. Dreaming up Metamorphic Relations: Experiences from
Three Fuzzer Tools. In 2021 IEEE/ACM 6th International Workshop on

Metamorphic Testing (MET) (2021), pp. 61–68.
[51] LE, V., AFSHARI, M., AND SU, Z. Compiler Validation via Equivalence

modulo Inputs. SIGPLAN Not. 49, 6 (June 2014), 216–226.
[52] LEROY, X. Formal Verification of a Realistic Compiler. Commun. ACM

52, 7 (July 2009), 107–115.
[53] LIDBURY, C., LASCU, A., CHONG, N., AND DONALDSON, A. F. Many-

Core Compiler Fuzzing. In Proceedings of the 36th ACM SIGPLAN

Conference on Programming Language Design and Implementation (New
York, NY, USA, 2015), PLDI ’15, ACM, p. 65–76.

[54] LLVM. AArch64 Dead register definitions. https://llvm.org/docs/
doxygen/AArch64DeadRegisterDefinitionsPass 8cpp source.html.

347

https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://developer.arm.com/architectures/cpu-architecture/a-profile/morello
https://github.com/herd/herdtools7/blob/master/herd/libdir/rc11.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/rc11.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=108891
https://gcc.gnu.org/legacy-ml/gcc-patches/2018-10/msg01960.html
https://gcc.gnu.org/legacy-ml/gcc-patches/2018-10/msg01960.html
https://gcc.gnu.org/legacy-ml/gcc-patches/2018-10/msg02042.html
https://gcc.gnu.org/legacy-ml/gcc-patches/2018-10/msg02042.html
https://github.com/herd/herdtools7/pull/385
https://github.com/herd/herdtools7/pull/385
https://github.com/llvm/llvm-project/issues/61770
https://github.com/llvm/llvm-project/issues/62652
https://github.com/llvm/llvm-project/issues/62652
https://github.com/llvm/llvm-project/issues/68428
https://github.com/llvm/llvm-project/issues/61431
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110573
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110573
https://doi.org/10.5281/zenodo.10411403
https://lpc.events/event/16/contributions/1174/
https://lpc.events/event/16/contributions/1174/
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2912.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2912.pdf
https://llvm.org/docs/doxygen/AArch64DeadRegisterDefinitionsPass_8cpp_source.html
https://llvm.org/docs/doxygen/AArch64DeadRegisterDefinitionsPass_8cpp_source.html

[55] LLVM-BUGZILLA. [AArch64] atomicrmw on Armv8.1-a memory
ordering can be changed. https://bugs.llvm.org/show bug.cgi?id=35094,
2019. Accessed: 2020-13-06.

[56] LLVM-PHABRICATOR. [AArch64] Fix for bug 35094 atomicrmw on
Armv8.1-A+lse. https://reviews.llvm.org/D58348, 2019.

[57] LLVM-PHABRICATOR. AAArch64: use ldp/stp for 128-bit
atomic load/store in v.84 onwards. https://reviews.llvm.org/
rG13aa102e07695297fd17f68913c343c95a7c56ad, 2021.

[58] LLVM-PHABRICATOR. Add support for LDAPR. https://reviews.llvm.
org/D126250, 2022. Accessed: 2022-11-22.

[59] LLVM-PHABRICATOR. [WoA] Use fences for sequentially consistent
stores/writes. https://reviews.llvm.org/D141748, 2023.

[60] LOPES, N. P., LEE, J., HUR, C.-K., LIU, Z., AND REGEHR, J. Alive2:

Bounded Translation Validation for LLVM. Association for Computing
Machinery, New York, NY, USA, 2021, p. 65–79.

[61] MARANGET, L. RISC-V Memory Model. https://github.com/herd/
herdtools7/blob/master/herd/libdir/riscv.cat, 2022.

[62] MARANGET, L. ARM model vs. AArch32 model. https://cambium.inria.
fr/∼maranget/cats7/aarch32/, 2023.

[63] MARANGET, L., AND ALGLAVE, J. IBM PowerPC Memory Model.
https://github.com/herd/herdtools7/blob/master/herd/libdir/ppc.cat, 2022.

[64] MARANGET, L., AND ALGLAVE, J. MIPS Memory Model. https:
//github.com/herd/herdtools7/blob/master/herd/libdir/mips.cat, 2023.

[65] MARANGET, L., AND ALGLAVE, J. x86-64 Memory Model. https:
//github.com/herd/herdtools7/blob/master/herd/libdir/x86tso-mixed.cat,
2023.

[66] MORISSET, R., PAWAN, P., AND ZAPPA NARDELLI, F. Compiler Testing
via a Theory of Sound Optimisations in the C11/C++11 Memory Model.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming

Language Design and Implementation (New York, NY, USA, 2013),
PLDI ’13, ACM, pp. 187–196.

[67] NIMAL, V. P. J. Static analyses over weak memory. PhD thesis, University
of Oxford, UK, 2014.

[68] OETSCH, J., PRISCHINK, M., PÜHRER, J., SCHWENGERER, M., AND

TOMPITS, H. On the Small-Scope Hypothesis for Testing Answer-Set
Programs. In Proceedings of the Thirteenth International Conference on

Principles of Knowledge Representation and Reasoning (2012), KR’12,
AAAI Press, p. 43–53.

[69] PODKOPAEV, A., LAHAV, O., AND VAFEIADIS, V. Bridging the Gap
between Programming Languages and Hardware Weak Memory Models.

Proc. ACM Program. Lang. 3, POPL’19 (Jan. 2019).
[70] ROCHA, R. C. O., SPROKHOLT, D., FINK, M., GOUICEM, R., SPINK,

T., CHAKRABORTY, S., AND BHATOTIA, P. Lasagne: A Static Binary
Translator for Weak Memory Model Architectures. In Proceedings of

the 43rd ACM SIGPLAN International Conference on Programming

Language Design and Implementation (New York, NY, USA, 2022),
PLDI 2022, Association for Computing Machinery, p. 888–902.

[71] SARKAR, S., SEWELL, P., ALGLAVE, J., MARANGET, L., AND

WILLIAMS, D. Understanding POWER Multiprocessors. PLDI ’11,
ACM, pp. 175–186.

[72] SARKAR, S., SEWELL, P., NARDELLI, F. Z., OWENS, S., RIDGE, T.,
BRAIBANT, T., MYREEN, M. O., AND ALGLAVE, J. The Semantics of
x86-CC Multiprocessor Machine Code. In Proceedings of the 36th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (New York, NY, USA, 2009), POPL ’09, ACM, pp. 379–391.
[73] TANGE, O. Gnu parallel - the command-line power tool. ;login: The

USENIX Magazine 36, 1 (Feb 2011), 42–47.
[74] VAFEIADIS, V., BALABONSKI, T., CHAKRABORTY, S., MORISSET, R.,

AND ZAPPA NARDELLI, F. Common Compiler Optimisations Are Invalid
in the C11 Memory Model and What We Can Do About It. POPL ’15,
ACM, pp. 209–220.

[75] ŠEVČÍK, J., VAFEIADIS, V., ZAPPA NARDELLI, F., JAGANNATHAN, S.,
AND SEWELL, P. CompCertTSO: A Verified Compiler for Relaxed-
Memory Concurrency. J. ACM 60, 3 (June 2013).

[76] WICKERSON, J., BATTY, M., SORENSEN, T., AND CONSTANTINIDES,
G. A. Automatically Comparing Memory Consistency Models. POPL
2017, ACM, pp. 190–204.

[77] WINDSOR, M., DONALDSON, A. F., AND WICKERSON, J. C4: The
C Compiler Concurrency Checker. In Proceedings of the 30th ACM

SIGSOFT International Symposium on Software Testing and Analysis

(New York, NY, USA, 2021), ISSTA 2021, ACM, p. 670–673.
[78] WINDSOR, M., DONALDSON, A. F., AND WICKERSON, J. High-

coverage metamorphic testing of concurrency support in C compilers.
Software Testing, Verification and Reliability (2022), e1812.

[79] YANG, X., CHEN, Y., EIDE, E., AND REGEHR, J. Finding and
Understanding Bugs in C Compilers. In Proceedings of the 32nd

ACM SIGPLAN Conference on Programming Language Design and

Implementation (New York, NY, USA, 2011), PLDI ’11, ACM, pp. 283–
294.

348

https://bugs.llvm.org/show_bug.cgi?id=35094
https://reviews.llvm.org/D58348
https://reviews.llvm.org/rG13aa102e07695297fd17f68913c343c95a7c56ad
https://reviews.llvm.org/rG13aa102e07695297fd17f68913c343c95a7c56ad
https://reviews.llvm.org/D126250
https://reviews.llvm.org/D126250
https://reviews.llvm.org/D141748
https://github.com/herd/herdtools7/blob/master/herd/libdir/riscv.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/riscv.cat
https://cambium.inria.fr/~maranget/cats7/aarch32/
https://cambium.inria.fr/~maranget/cats7/aarch32/
https://github.com/herd/herdtools7/blob/master/herd/libdir/ppc.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/mips.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/mips.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/x86tso-mixed.cat
https://github.com/herd/herdtools7/blob/master/herd/libdir/x86tso-mixed.cat

	Introduction
	Our Contributions
	T��l��chat Benefits

	Preliminaries
	Litmus Tests and Memory Models
	Compiler Testing
	State-of-the-art Techniques
	Prose and Expertise
	Semi-automatic Tools
	Hardware-based Tools
	Our Solution - Testing with Models

	Design and Implementation of T��l��chat
	Technique Design
	Tool Implementation
	Adoption, Usage, and Documentation
	Challenges Encountered During Implementation

	Evaluation
	Comparison with The State-Of-The-Art: C4
	The Local Variable Problem
	Bug-Finding Campaign
	Large-Scale Differential Testing
	Limitations of Model-based Testing
	Industry Impact

	Conclusions and Further Work
	Abstract
	Artefact Checklist
	Description
	How Delivered
	Hardware Dependencies
	Software Dependencies

	Installation
	Experiment Workflow
	Paper Claims
	Evaluation and Expected Results
	Experiment Customisation
	Available Benchmarks

	References

